Superfluid spin transport through antiferromagnetic insulators

نویسندگان

  • So Takei
  • Bertrand I. Halperin
  • Amir Yacoby
  • Yaroslav Tserkovnyak
چکیده

A theoretical proposal for realizing and detecting spin supercurrent in an isotropic antiferromagnetic insulator is reported. Superfluid spin transport is achieved by inserting the antiferromagnet between two metallic reservoirs and establishing a spin accumulation in one reservoir such that a spin bias is applied across the magnet. We consider a class of bipartite antiferromagnets with Néel ground states, and temperatures well below the ordering temperature, where spin transport is mediated essentially by the condensate. Landau-Lifshitz and magnetocircuit theories are used to directly relate spin current in different parts of the heterostructure to the spin-mixing conductances characterizing the antiferromagnet|metal interfaces and the antiferromagnet bulk damping parameters, quantities all obtainable from experiments. We study the efficiency of spin angular-momentum transfer at an antiferromagnet|metal interface by developing a microscopic scattering theory for the interface and extracting the spin-mixing conductance for a simple model. Within the model, a quantitative comparison between the spin-mixing conductances obtained for the antiferromagnet|metal and ferromagnet|metal interfaces is made.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin Supercurrent

We review the main properties of Spin Waves condensation to a coherent quantum state, named Homogeneously Precessing Domain (HPD). We describe the long range coherent transport of magnetization by Spin Supercurrent in antiferromagnetic superfluid He. This quantum phenomenon was discovered 20 years ago. Since then, many magnetic extensions of superconductivity and superfluidity have been observe...

متن کامل

Chiral Magnetic Effect and Anomalous Hall Effect in Antiferromagnetic Insulators with Spin-Orbit Coupling.

We search for dynamical magnetoelectric phenomena in three-dimensional correlated systems with spin-orbit coupling. We focus on the antiferromagnetic insulator phases where the dynamical axion field is realized by the fluctuation of the antiferromagnetic order parameter. It is shown that the dynamical chiral magnetic effect, an alternating current generation by magnetic fields, emerges due to s...

متن کامل

Spin Superfluidity in the ν=0 Quantum Hall State of Graphene.

Strong electron interactions can lead to a variety of broken-symmetry phases in monolayer graphene. In the quantum Hall regime, the interaction effect are enhanced by the formation of highly degenerate Landau levels, catalyzing the emergence of such phases. Recent magnetotransport studies show evidence that the ν=0 quantum Hall state of graphene is in an insulating canted antiferromagnetic phas...

متن کامل

Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers

A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junc...

متن کامل

Electric-field-induced spin resonance in antiferromagnetic insulators: Inverse process of the dynamical chiral magnetic effect

We propose a realization of the electric-field-induced antiferromagnetic resonance. We consider threedimensional antiferromagnetic insulators with spin-orbit coupling characterized by the existence of a topological term called the θ term. By solving the Landau-Lifshitz-Gilbert equation in the presence of the θ term, we show that, in contrast to conventional methods using ac magnetic fields, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014